Информатика


Решение прикладных задач - часть 12


Для первого алгоритма для первых шагов вычисления получаем:

Sd0 = 0,

Sd1 = Sd0 + d1 = d1,

Sd2 = Sd1

+ d2 = d1

+ d2.

Для последующих шагов можно заключить, что

Sdk = Sdk-1 + dk = d1 + d2 + ... + dk-1 + dk.

Это доказывается с помощью математической индукции. В силу этого утверждения окончательным результатом вычислений станет сумма доходов

SdN

= d1 + d2

+ ... + dN-1 +  dN.

Следовательно, алгоритм подсчета доходов - правильный.

Для второго алгоритма подсчета расходов получаются аналогич­ные оценки:

Sr0

= 0,

Sr1 = Sr0 + r1

= r1,

Sr2 = Sr1

+ r2 = r1 + r2

и для последующих шагов вычислений:

Sri

= Sri-1 + ri = r1

+ r2 +... + ri-1+ ri.

Это доказывается также с помощью математической индукции. На основании этого утверждения можно сделать заключение о ко­нечном результате выполнения алгоритма:

SrM = r1 + r2 + ... + rM-1+ rM.

Следовательно, алгоритм подсчет расходов правильный. Но в основном алгоритме содержится единственная расчетная формула

S = Sd - Sr.

В силу доказанных утверждений о результатах выполнения алго­ритмов «подсчета доходов» и «подсчета расходов» конечным резуль­татом вычислений станет величина

S = Sd - Sr = (d1

+ d2 + ... + dN) - (r1 + r2 + ... + rM).

Что и требовалось доказать. Следовательно, весь комплекс алго­ритмов и программа в целом правильны.

 

 

В о п р о с ы

 

1. К чему приводят ошибки в экономических программах?

2. Кто отвечает за ошибки в экономических программах?

3. Что дают постановки задач?

4. Зачем нужны описания методов?

5. Как проверяется правильность методов?

6. Зачем нужны описания результатов?

 

З а д а ч и

 

1. В магазине имеются товары различных наименований. В течение дня каждый из М покупателей (М - заданное число) сообщил о своем намерении приобрести определенное количество товара одного из на­именований. Требуется определить суммарный спрос на товары каждого наименования, расположив товары в порядке убывания дневного спроса на них.

2. Каждый из N магазинов в течение месяца работал D дней (N и D - заданные числа 1, 2, ....


Начало  Назад  Вперед