Информатика


Законы логического вывода - часть 3


 

Содержательный смысл: При противоречии А(х) и не А(с) контр­примером служит х = с. Здесь х - переменная, а с

- конкретное значение, при котором отрицание ответа оказывается ложным. Это значение х = с выводится системой Пролог в качестве ответа на поставленный вопрос. Примеры такого рода вопросов и ответов:

 

? папа (х, Коля)                    - Кто папа у Коли ?

нет

? папа (х, Оля)                      - Кто папа у Оли ?

х = Коля

? мама (х, у)                          - Что известно о мамах?

х = Зина         у = Надя

х = Надя         у = Оля

 

Закон двойного отрицания - третий общий закон логики. Этот закон также был высказан Аристотелем:

 

не (не А)                                 - Если неверно отрицание,

       А                                      то суждение – истинно

 

Примеры рассуждений.

1) Неверно, что «Вчера не было дождя».

Следовательно, «Вчера был дождь».

2) Неправда, что «это сделал не Саша».

Следовательно, «это сделал Саша». (?)

 

Из второго примера видно, что закон двойного отрицания явля­ется косвенным доказательством, поскольку оно не опирается на факты или аргументы. По этим причинам закон двойного отрицания может оказаться ошибочным и этот закон не является общезначи­мым (верным для всех случаев и ситуаций).

Правильность утверждений и рассуждений даже при безупречной логике доказательств зависит от достоверности исходных фактов и положений. Эту идею выражает четвертый общий логический за­кон - закон достаточных оснований, впервые сформулированный Лейбницем - создателем одной из самых первых механических вы­числительных машин и основателем исчисления предикатов.

 

Закон достаточных оснований:

Всякое утверждение должно предполагать существование аргументов и фактов, достаточных для его обоснования.

 

Иными словами, любое утверждение должно предполагать нали­чие набора конкретных фактов и правил, из которых должно выте­кать утверждаемое. Нарушениями это закона являются рассуждения, опирающиеся на недостоверные факты или положения, истинность которых не проверяется, а принимается на веру.




Начало  Назад  Вперед