Для трехмерной табличной интерполяции используется функция interp3:
VI = interp3(X.Y.Z.V.XI,YI.ZI) — интерполирует, чтобы найти VI, значение основной трехмерной функции V в точках матриц XI, YI и ZI. Матрицы X, Y и Z определяют точки, в которых задано значение V. XI, YI и ZI могут быть матрицами, в этом случае InterpS возвращает значения Z, соответствующие точкам (XI (i ,j) ,YI(i. j), ZI (i. j)). В качестве альтернативы можно передать векторы xi, yl и zi. Векторы аргументы, имеющие неодинаковый размер, представляются, как если бы использовалась команда meshgrid;
VI = interpS(V.ntimes) — осуществляет интерполяцию рекурсивным методом с числом шагов ntimes;
VI = interp3(... .method) — позволяет задать метод интерполяции:
'nearest' — ступенчатая интерполяция;
'linear' — линейная интерполяция;
'cubic' — кубическая интерполяция (полиномами Эрмита);
'spline' — интерполяция сплайнами.
Все методы интерполяции требуют, чтобы X, Y и Z изменялись монотонно и имели такой же формат, как если бы они были получены с помощью функции meshgrid. Когда X и Y и Z — векторы равномерно распределенных в пространстве узловых точек, для более быстрой интерполяции лучше использовать методы '*li'near', '*cubic' или '*nearest'.